Premio*y otros. BMC Neurosci (2018) 19:34* https://doi.org/10.1186/s12868-018-0434-z

ARTICULO DE INVESTIGACION

Acceso abierto

Modulación de la plasticidad cortical de tipo potenciación a largo plazo en el cerebro sano con campos electromagnéticos pulsados de baja frecuencia

Enrico Premi_{1,2*}, Alberto Benussi₂, Antonio La Gatta₃, Stefano Visconti₄, Ángelo Costa₁, Nicola Gilberti₁, Valentina Cantoni₂, Alessandro Padovani₂, Bárbara Borroni₂y Mauro Magoni₁

Abstracto

Fondo:Los campos magnéticos no despolarizantes, como los campos electromagnéticos pulsados de baja frecuencia (LF-PEMFs), han demostrado tener la capacidad de modular las estructuras vivas, principalmente al influir en la actividad sináptica y los canales iónicos de las membranas celulares. Recientemente, se presentó el dispositivo CTU Mega 20 como un acelerador molecular que utiliza energía de hasta 200 J y proporciona campos pulsantes de alta potencia (2 Tesla) con una acción repulsiva del agua (diamagnética) y bioestimulación tisular. Probamos la hipótesis de que los LF-PEMF podrían modular la excitabilidad corticoespinal a largo plazo en cerebros sanos mediante la aplicación de CTU Mega 20®. Diez sujetos sanos sin enfermedades neurológicas y/o psiquiátricas conocidas ingresaron al estudio. Se empleó un diseño cruzado, aleatorizado, doble ciego y controlado con placebo, en el que se registraron los parámetros de TMS (variación de amplitud del potencial evocado motor como índice de perturbaciones de la excitabilidad cortical del sistema motor) antes (antes) y después (después de +0, +15, +30 min) de una única sesión de CTU Mega 20 en el área motora primaria derecha correspondiente, utilizando un dispositivo real (campo magnético = 2 Tesla; intensidad = 90 J; frecuencia de impulso = 7 Hz; duración = 15 min) o simulado. Se aplicó un ANOVA de medidas repetidas de dos vías con TIEMPO (antes, después de +0, +15, +30 min) y TRATAMIENTO (estimulación real vs. simulada) como factor intrasujetos.

Resultados:Un TIEMPO significativo×Se encontró interacción de TRATAMIENTO (*pag*<0,001). Las comparaciones post hoc mostraron un efecto significativo del TIEMPO, con diferencias significativas a los +0, +15 y +30 min en comparación con la línea base después de la estimulación real (todas *pag*<0,05) pero no después de la estimulación simulada (todos*pag*<0,05) y efectos significativos del TRATAMIENTO, con diferencias significativas a los +0, +15 y +30 min para la estimulación real en comparación con la estimulación simulada (todas*pag*<0,005). No se detectaron efectos despolarizantes significativos durante toda la estimulación (real).

Conclusiones: Nuestro estudio de prueba de concepto en sujetos sanos respalda la idea de que los campos electromagnéticos de baja frecuencia no ionizantes inducidos por el sistema de aceleración diamagnética Mega 20 de CTU podrían representar un nuevo enfoque para la neuromodulación cerebral. Se justifican estudios adicionales para optimizar los parámetros del protocolo para diferentes afecciones neurológicas y psiquiátricas.

*Registro de prueba*El presente trabajo se registró retrospectivamente como ensayo clínico en ClinicalTrials.gov NCT03537469 y se publicó el 24 de mayo de 2018.

Palabras clave:Plasticidad cortical de tipo potenciación a largo plazo, campos electromagnéticos pulsados de baja frecuencia, diamagnetismo, neuroplasticidad

^{*} Correspondencia: zedtower@gmail.com

1Unidad de Ictus, Azienda Socio Sanitaria Territoriale "Spedali Civili", Hospital
"Spedali Civili", Piazza Spedali Civili 1, 25123 Brescia, Italia

La lista comoleta de información del autor está disponible al final del artículo.

Fondo

Varios estudios han investigado los efectos de diferentes métodos de estimulación en la modulación de la plasticidad del cerebro humano [1-3]. Entre estos, se ha demostrado que los paradigmas de estimulación asociativa pareada (PAS) modulan la excitabilidad de las fibras corticoespinales relacionadas con la corteza motora primaria, como una forma de modulación a largo plazo, incluida la potenciación a largo plazo (LTP) o la depresión a largo plazo (LTD) vinculada a la plasticidad sináptica [4,5]. Todos estos enfoques inducen corrientes eléctricas para obtener una despolarización en las regiones cerebrales estimuladas [6,7]. Sin embargo, incluso los campos magnéticos no despolarizantes, como los de los imanes estáticos [8-10] o campos electromagnéticos pulsados de baja frecuencia (LF-PEMF) [11,12], han demostrado el potencial de modular las estructuras vivas [8,13]. En particular, estos enfoques no despolarizantes parecen influir en la actividad sináptica y los canales iónicos en las membranas celulares [8]. De hecho, se ha sugerido que el LF-PEMF puede influir en numerosos tipos de cambios en las células, incluida la migración, la diferenciación celular, la respuesta al estrés, afectando potencialmente la morfología, la migración de células embrionarias y la reprogramación celular [13-17]. Además, se ha informado que LF-PEMF promueve la diferenciación osteogénica y neurogénica, lo que se ha utilizado clínicamente para reparar fracturas óseas y promover la cicatrización de heridas [18,19], y se ha demostrado que tiene un efecto neuroprotector después de un accidente cerebrovascular isquémico en ratones durante el proceso de recuperación [11]. Varios ensayos también han evaluado los efectos del LF-PEMF en el trastorno depresivo mayor y la depresión unipolar o bipolar [20-22]. Además, se ha informado que el LF-PEMF influye en el metabolismo de la glucosa cerebral, afectando así la actividad cerebral local [23]. En conjunto, estos estudios indican que el LF-PEMF puede estar involucrado en la neuroprotección.

Los PEMF de baja frecuencia (< 50 Hz) pueden considerarse una clase de radiación no ionizante con una energía asociada < 12 electronvoltios (eV), no suficiente para inducir fenómenos de ionización [24], pero con efectos potenciales sobre los componentes biológicos [25]. Recientemente, la CTU Mega 20® dispositivo (ver fig.1) se presentó como un acelerador molecular, que utiliza una energía de hasta 200 J y proporciona campos pulsantes de alta potencia (2 Tesla) con una acción repulsiva del agua (diamagnética) con una consecuente bioestimulación tisular [25, 26]. En esta investigación probamos la hipótesis de que los PEMF de baja frecuencia podrían modular la excitabilidad corticoespinal a largo plazo en el cerebro sano mediante la aplicación de campos magnéticos pulsados transcraneales con CTU Mega 20.®(http://www.peris o.ch/). Por lo tanto, utilizamos la estimulación magnética transcraneal de pulso único (EMT), que permite un registro in vivo de la variación de amplitud de los potenciales evocados motores como una herramienta para explorar las perturbaciones de la excitabilidad cortical del sistema motor después de la aplicación de CTU Mega 20.

Figura 1Dispositivo CTU Mega 20. El equipo original utilizado en el estudio, proporcionado directamente por PERISO SA (http://www.periso.ch/)

Métodos

Temas

Se reclutaron para este estudio diez sujetos sanos sin enfermedades neurológicas o psiquiátricas conocidas (edad media±desviación estándar: 25,5±3,8 años) (ver Tabla1).

Los sujetos y operadores que realizaron la TMS no sabían el tipo de estimulación aplicada.

Se obtuvo el consentimiento informado por escrito de todos los sujetos de acuerdo con la Declaración de Helsinki. El protocolo del estudio fue aprobado por el comité de ética local. Este estudio se adhiere a las pautas CONSORT (http://www.consort-statement.org/) (ver archivo adicional)1 para la lista de verificación CON-SORT).

Estimulación CTU Mega 20

El sistema de aceleración diamagnética CTU Mega 20 descarga impulsos magnéticos de alto campo (con una duración de 5 ms y un período de 1000 ms), generando un campo magnético de hasta 2 Tesla, con una frecuencia de 7500 Hz en un volumen de aproximadamente 27 cm3[12] Ver archivo adicional2

Tabla 1 Características demográficas y parámetros neurofisiológicos

Variable	Real (n=10)	Simulacro (n=10)	pag
Edad (media)±DAKOTA DEL SUR)	25.5±3.8	25.5±3.8	-
Género % (no femenino) Nivel	50 (5)	50 (5)	-
educativo, años Lateralidad % (no	21.5±1.9	21.5±1.9	-
derecha) Hipótesis correcta sobre el	100 (10)	100 (10)	-
tratamiento % rMT (% de MSO)	50	50	-
	46.4±6.5	46.2±6.5	ns
Excitabilidad corticoespinal basal (mV)	1.01±0,12	1.05±0,05	ns
Excitabilidad corticoespinal post+0 (mV)	1.60±0,19	1.10±0,14	<i>pag</i> =0,001
Excitabilidad corticoespinal post+15 (mV)	1.69±0,18	1.12±0,21	<i>pag</i> <0,001
Excitabilidad corticoespinal, post+30 (mV)	1.57±0,34	1.07±0,20	<i>pag</i> =0,002

MSOsalida máxima del estimulador, DAKOTA DEL SURdesviación estándar, mVmilivoltio

para una descripción técnica detallada de los principios físicos y el funcionamiento de CTU Mega 20.

Para evaluar el efecto de los PEMF de baja frecuencia proporcionados por CTU Mega 20, empleamos un diseño cruzado aleatorizado, doble ciego y controlado con placebo, registrando los parámetros de TMS antes (antes) y después (después de +0, +15, +30 min) de una única sesión de CTU Mega 20 en el área motora primaria de la mano derecha correspondiente, utilizando un dispositivo real (campo magnético = 2 Tesla; intensidad = 90 J; frecuencia de impulsos = 7 Hz; duración = 15 min) o simulado. Los sujetos fueron evaluados aleatoriamente para la estimulación con protocolo real o simulado, en una proporción de 1:1, con un intervalo medio de 16,9±2,1 días entre sesiones.

Para detectar diferencias en la percepción de la estimulación, preguntamos a los pacientes si creían que estaban recibiendo una estimulación real o simulada al final de cada tratamiento.

Estimulación magnética transcraneal

La TMS se realizó con una bobina en forma de ocho (diámetro del bucle: 70 mm) conectada a un Magstim 200₂Estimulador (Magstim Company, Oxford, Reino Unido). Los estímulos magnéticos tenían una forma de onda de corriente monofásica (tiempo de ascenso de 100 μs, decayendo de nuevo a cero a lo largo de 800 μs). Los potenciales evocados motores (MEP) se registraron desde el primer músculo interóseo dorsal (FDI) derecho a través de electrodos de superficie Ag/AgCl colocados en un montaje de tendón abdominal y adquiridos utilizando un electromiógrafo Biopac MP-150 (BIOPAC Systems Inc., Santa Barbara, CA, EE. UU.), como se informó anteriormente [27].

La bobina TMS se sostuvo tangencialmente sobre la zona del cuero cabelludo relacionada con el área motora primaria de la mano contralateral al músculo objetivo, con el mango de la bobina apuntando 45° posterior y lateralmente al plano sagital. La región motora se consideró como la ubicación donde la TMS produjo de manera constante el mayor tamaño de MEP al 120 % del umbral motor en reposo (rMT) en el músculo objetivo. La región se marcó con un rotulador en el cuero cabelludo para garantizar

Colocación constante de la bobina durante todo el experimento. La intensidad del estimulador se estableció para provocar un MEP de aproximadamente 1 mV pico a pico en el FDI relajado al inicio, y se mantuvo constante durante toda la sesión. Las mediciones de amplitud del MEP (promedio de 25 respuestas) se realizaron al inicio y a los 0, 15 y 30 minutos después de la estimulación simulada o real. El intervalo entre ensayos se estableció en 5 s (± 10%).

Durante todo el experimento, se garantizó la relajación muscular completa mediante retroalimentación audiovisual cuando fue necesario. Se descartaron los ensayos si la actividad EMG superaba los 100 μ V en los 250 ms previos a la administración del estímulo TMS. Todos los participantes pudieron comprender las instrucciones y obtuvieron una relajación muscular completa.

Análisis estadístico

Los parámetros neurofisiológicos se compararon mediante un ANOVA de medidas repetidas de dos vías con TIEMPO (pre, post +0, +15, +30 min) y TRATAMIENTO (estimulación real vs. simulada) como factor intra-sujetos. Cuando se alcanzó un efecto principal significativo, se realizaron pruebas post hoc con corrección de Bonferroni para comparaciones múltiples para analizar las diferencias de grupo en los respectivos intervalos entre estímulos o puntos temporales. Se utilizó la prueba de Mauchly para probar la suposición de esfericidad, mientras que la determinación de épsilon de Greenhouse-Geisser se utilizó para corregir en caso de violación de la esfericidad.

Se utilizó la correlación de orden de rango de Spearman para evaluar la asociación entre el porcentaje de aumento en la amplitud del MEP y el rMT basal.

Se asumió significación estadística en*pag*< 0,05. Los análisis de datos se realizaron utilizando el software SPSS 21.0.

Resultados

En cuanto a las diferencias en la percepción de la estimulación por parte de los sujetos, no se encontró asociación estadísticamente significativa entre el tipo de estimulación y su percepción, evaluada mediante la prueba exacta de Fisher, *pag*= 1,00, lo que sugiere que la estimulación real no podía distinguirse de la estimulación simulada.

El ANOVA de medidas repetidas de dos vías realizado sobre la excitabilidad corticoespinal reveló un TIEMPO significativo× Interacción TRATAMIENTO, F(3, 27) = 0,453, pag<0,001, η parcial2= 0,645. Se observó un efecto principal significativo del TIEMPO, con diferencias significativas en las pruebas post hoc a los + 0, + 15 y + 30 min en comparación con la línea base después de la estimulación real (todaspag<0,05) pero no después de la estimulación simulada (todospag>0,05). También hubo un efecto principal significativo del TRATAMIENTO, con diferencias significativas en + 0, + 15 y + 30 min frente al valor inicial, para la estimulación real pero no para la estimulación simulada (todas pag<0,005) (ver Tabla1, Higo.2).

No hubo asociación significativa entre el porcentaje de aumento en la amplitud media del MEP y el rMT basal en ambos grupos (estimulación real: rs= 0,10, pag=0,776; estimulación simulada: rs= 0,46,pag=0,177).

Durante la fase de tratamiento (aplicación del protocolo CTU Mega 20 real o simulado), se monitoreó la actividad EMG con amplificación de alta ganancia para resaltar posibles efectos despolarizantes, que sin embargo estuvieron ausentes durante la estimulación.

Discusión

En este estudio, empleamos un diseño cruzado controlado con placebo, doble ciego y aleatorizado (para controlar factores conocidos y desconocidos que podrían influir potencialmente en la actividad cerebral y el registro de TMS) para demostrar que los campos electromagnéticos pulsados de baja frecuencia (LF-PEMF) inducidos por CTU Mega 20 fueron capaces de modular la excitabilidad cortical en cerebros humanos, incluso después de una aplicación de una sola dosis. Como se describió anteriormente, estos hallazgos no se vieron influenciados por las expectativas del tratamiento del sujeto (estimulación real versus estimulación simulada), considerando su efecto potencial sobre la actividad cerebral y, en consecuencia, sobre los parámetros de TMS [28]. En línea con la estimulación del campo magnético estático transcraneal [10,23,29], la mejora de la excitabilidad cortical no estaba directamente relacionada con las corrientes eléctricas inducidas, como es el caso de otras técnicas de neuromodulación basadas en TMS.

En nuestro experimento, al proporcionar un estímulo magnético pulsado de 15 minutos en el área motora primaria, obtuvimos un aumento persistente de más del 60% en la excitabilidad corticoespinal (como un índice de plasticidad cortical similar a la potenciación a largo plazo), registrando el MEP del primer músculo interóseo dorsal contralateral. Esta perturbación duró al menos 30 minutos después del protocolo de estimulación, manteniendo potencialmente una diferencia significativa

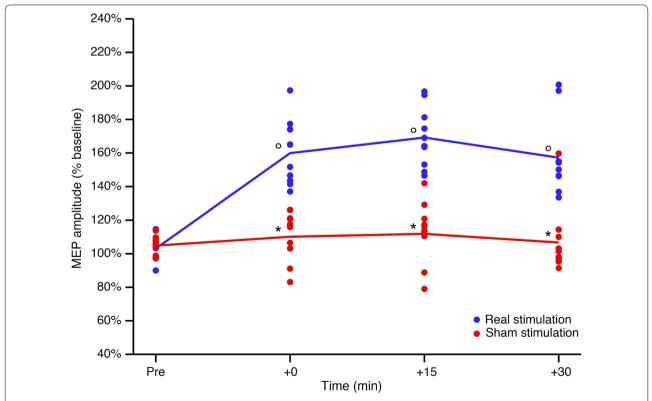


Figura 2Excitabilidad corticoespinal después de estimulación real y simulada. Efectos de la estimulación real y simulada sobre la excitabilidad corticoespinal, medidos por el cambio en la amplitud de 1 mV MEP en varios puntos temporales, en los grupos de estimulación real (línea azul) y simulada (línea roja). Las barras de error representan errores estándar. *pag<0,05 frente a la estimulación real. *pag<0,05 frente al valor inicial (TO). Diputado europeopotencial evocado motor, m/milivoltio, mín.minutos

(al menos un 30%), incluso durante un tiempo más prolongado. Como se informó anteriormente, la bioestimulación tisular proporcionada por CTU Meg 20 se basó en PEMF de baja frecuencia no ionizantes, que podrían actuar principalmente a nivel de sinapsis, alterando la función del canal iónico de la membrana. En particular, se demostró que el Ca2+ y Na+La actividad del canal puede verse perturbada por campos magnéticos, considerando las características anisotrópicas diamagnéticas de los fosfolípidos de membrana [8,30,31]. Curiosamente, el CTU Mega 20 se define como un sistema de aceleración diamagnética, que permite impulsos magnéticos de alto campo potencialmente capaces de inducir la reorientación magnética de los fosfolípidos de membrana y, en consecuencia, inducir un efecto biológico en la función del sistema nervioso. Desde este punto de vista, hay tres puntos en nuestro estudio de prueba de concepto que respaldan la idea de que los PEMF de baja frecuencia no ionizantes inducidos por el CTU Mega 20 podrían representar un nuevo enfoque para la neuromodulación cerebral. Son (1) el CTU Mega 20 proporcionó un mayor volumen de estimulación (hasta 27 cm3en comparación con 1–2 cm3para TMS) permitiendo la modulación de una porción extendida de la superficie cortical, en comparación con TMS; (2) como un dispositivo disponible comercialmente, el CTU Mega 20 está listo para usar, con programas predefinidos para realizar la estimulación del sistema nervioso, no requiere personal especializado y se puede adaptar fácilmente a la aplicación clínica diaria; (3) como un sistema completamente programable, el CTU Mega 20 se puede optimizar para diferentes tipos de estimulación y diferentes enfermedades neurológicas. En conclusión, el sistema de aceleración diamagnética CTU Mega 20 puede ser de interés en el campo de la neuromodulación. Se justifican más estudios para optimizar los parámetros del protocolo para diferentes afecciones neurológicas y psiquiátricas [32,33].

Conclusiones

Este estudio de prueba de concepto en sujetos sanos respalda la idea de que los campos electromagnéticos de baja frecuencia no ionizantes inducidos por el sistema de aceleración diamagnética Mega 20 de CTU podrían representar un nuevo enfoque para la neuromodulación cerebral. Se justifican estudios adicionales para optimizar los parámetros del protocolo para diferentes afecciones neurológicas y psiquiátricas.

Archivos adicionales

Archivo adicional 1.Lista de verificación CONSORT 2010. Lista de verificación CONSORT 2010 de la información que se debe incluir al informar sobre un ensayo aleatorio, con el número de página de cada elemento informado a la derecha.

Archivo adicional 2. Unidad de tratamiento de aguas residuales Mega 20*Descripción técnica. Descripción: descripción detallada de la base física y técnica del funcionamiento de la CTU Mega 20*Dispositivo utilizado en el presente estudio.

Abreviaturas

PAS: estimulación asociativa pareada; LTP: potenciación a largo plazo; LTD: depresión a largo plazo; LF-PEMF: campos electromagnéticos pulsados de baja frecuencia; Hz:

Hertz; eV: Electronvoltio; CTU Mega 20: Nombre del dispositivo utilizado en el presente estudio; TMS: Estimulación magnética transcraneal; MEP: Potencial evocado motor; ms: Milisegundo; min: Minuto; J: Julio; μs: Microsegundo; FDI: Primer músculo interóseo dorsal; Ag/AgCl: Cloruro de plata; rMT: Umbral motor en reposo; EMG: Electromiografía; μV: Microvoltios; ANOVA: Análisis de varianza.

Contribuciones de los autores

Todos los autores hicieron contribuciones sustanciales al concepto y diseño del estudio, y/ o la adquisición de datos, y/o el análisis e interpretación de los datos. En detalle, EP: primer borrador del manuscrito, cohorte de pacientes, interpretación de datos, conceptualización y diseño del estudio, AB: registro de datos de TMS, análisis de datos de TMS e interpretación de datos, conceptualización y diseño del estudio, revisión crítica del manuscrito para el contenido, ALG: desarrollador original del dispositivo (CTU) utilizado, descripción técnica del dispositivo, revisión crítica del manuscrito para el contenido, SV, AC, NG: cohorte de sujetos, revisión crítica del manuscrito para el contenido, VC: cohorte de sujetos, registro de datos de TMS, AP: revisión crítica del manuscrito para el contenido, BB, MM: conceptualización y diseño del estudio, revisión crítica del manuscrito para el contenido.

Datos del autor

1Unidad de Ictus, Azienda Socio Sanitaria Territoriale "Spedali Civili", Hospital "Spedali Civili", Piazza Spedali Civili 1, 25123 Brescia, Italia.2Unidad de Neurología, Departamento de Ciencias Clínicas y Experimentales, Universidad de Brescia, Brescia, Italia. 3cNVR Consorzio Veneto di Ricerca, Padua, Italia.4Unidad de Rehabilitación, Casa di Cura "Villa Barbarano", Salò, Brescia, Italia.

Expresiones de gratitud

Nos gustaría agradecer a todos los participantes (estudiantes de medicina, residentes en Neurología, neuropsicólogos) involucrados en el estudio.

Intereses en competencia

Este estudio fue financiado por PERISO SA (http://www.periso.ch/).

Disponibilidad de datos y materiales

Los datos brutos están disponibles para todos los investigadores interesados mediante solicitud directa del autor correspondiente (Dr. Premi, zedtower@gmail.com) o del Dr. Magoni, (mauro.magoni@asst-spedalicivili.it), jefe de la Unidad de Ictus, Azienda Socio Sanitaria Territoriale "Spedali Civili", Hospital "Spedali Civili", Brescia, Italia.

Consentimiento para publicación

Los participantes del estudio dieron su consentimiento informado por escrito para participar en el estudio y para la publicación de este informe y de las imágenes que lo acompañan. También se obtuvo el consentimiento para la publicación del comité de ética local de nuestro hospital en Brescia, Italia.

Aprobación ética y consentimiento para participar

Todos los procedimientos realizados en estudios con participantes humanos se llevaron a cabo de conformidad con la declaración de Helsinki de 1964 enmendada o normas éticas comparables y con las normas éticas del Hospital de Brescia (ASST Spedali Civili). Además, este estudio fue aprobado (Número de autorización: 2322, 9 de marzo de 2016) por el Comité de Ética de ASST Spedali Civili. Se obtuvo el consentimiento informado por escrito para participar en el estudio de cada participante.

Fondos

Este estudio fue financiado por PERISO SA (http://www.periso.ch/), que proporcionó los dispositivos CTU (reales y simulados) y la descripción técnica escrita del dispositivo CTU (ver archivo adicional).2).

Nota del editor

Springer Nature se mantiene neutral con respecto a reclamos jurisdiccionales en mapas publicados y afiliaciones institucionales.

Recibido: 10 de noviembre de 2017 Aceptado: 29 de mayo de 2018

Published online: 13 June 2018

Referencias

- Stefan K, Kunesch E, Cohen LG, Benecke R, Classen J. Inducción de plasticidad en la corteza motora humana mediante estimulación asociativa pareada. Cerebro. 2000:123(Pt 3):572–84.
- 2. Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC. Estimulación de la corteza motora humana mediante ráfagas theta. Neuron. 2005;45(2):201–6.
- Nitsche MA, Paulus W. Cambios de excitabilidad inducidos en la corteza motora humana por estimulación transcraneal débil con corriente directa. J Physiol. 2000:527(Pt 3):633–9.
- 4. Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R, Di Lazzaro V, Ferreri F, Fitzgerald PB, George MS, et al. Estimulación eléctrica y magnética no invasiva del cerebro, la médula espinal, las raíces y los nervios periféricos: principios básicos y procedimientos para la aplicación clínica y de investigación de rutina. Un informe actualizado de un comité de la IFCN. Clin Neurophysiol. 2015;126(6):1071-107.
- Benussi A, Cosseddu M, Filareto I, Dell'Era V, Archetti S, Sofia Cotelli M, Micheli A, Padovani A, Borroni B. Deterioro de la plasticidad cortical similar a la potenciación a largo plazo en la demencia frontotemporal genética presintomática. Ana Neurol. 2016;80(3):472-6.
- Di Lazzaro V, Oliviero A, Pilato F, Saturno E, Dileone M, Mazzone P, Insola A, Tonali PA, Rothwell JC. La base fisiológica de la estimulación de la corteza motora transcraneal en humanos conscientes. Clínica Neurofisiol. 2004;115(2):255–66.
- Hallett M. Estimulación magnética transcraneal y el cerebro humano. Nature. 2000;406(6792):147–50.
- Rosen AD. Mecanismo de acción de campos magnéticos estáticos de intensidad moderada en sistemas biológicos. Cell Biochem Biophys. 2003;39(2):163–73.
- Coots A, Shi R, Rosen AD. Efecto de un campo magnético estático de 0,5 T sobre la conducción en la médula espinal de cobavos. I Neurol Sci. 2004:222(1-2):55-7.
- Oliviero A, Mordillo-Mateos L, Arias P, Panyavin I, Foffani G, Aguilar J. Estimulación del campo magnético estático transcraneal de la corteza motora humana. J Physiol. 2011;589(parte 20):4949–58.
- Urnukhsaikhan E, Mishig-Ochir T, Kim SC, Park JK, Seo YK. Efecto neuroprotector de los campos electromagnéticos pulsados de baja frecuencia en el accidente cerebrovascular isquémico. Appl Biochem Biotechnol. 2017;181(4):1360–71.
- Izzo MNL, Coscia V, La Gatta A, Mariani F, Gasbarro V. El papel de la bomba diamagnética (CTU Mega 18) en el tratamiento físico del linfedema de las extremidades. Un estudio clínico. Eur J Lymphol. 2010;21(61):24–9.
- Juutilainen J. Efectos de los campos electromagnéticos en el desarrollo. Bioelectromagnetismo. 2005; Supl. 7:S107–115.
- 14. Seo TB, Kim TW, Shin MS, Ji ES, Cho HS, Lee JM, Kim TW, Kim CJ. El ejercicio aeróbico alivia el deterioro de la memoria inducido por isquemia al mejorar la proliferación celular y suprimir la apoptosis neuronal en el hipocampo. Int Neurourol J. 2014;18(4):187–97.
- 15. Ceccarelli G, Bloise N, Mantelli M, Gastaldi G, Fassina L, De Angelis MG, Ferrari D, Imbriani M, Visai L. Un análisis comparativo de los efectos in vitro del tratamiento con campos electromagnéticos pulsados sobre la diferenciación osteogénica de dos linajes de células mesenquimales diferentes. Int Neurourol J. 2013;2(4):283–94.
- 16. Maaroufi K, Save E, Poucet B, Sakly M, Abdelmelek H, Had-Aissouni L. Estrés oxidativo y prevención de la respuesta adaptativa a la sobrecarga crónica de hierro en el cerebro de ratas adultas jóvenes expuestas a un campo electromagnético de 150 kilohercios. Neurociencia. 2011:186:39-47.
- 17. Levin M. Biofísica a gran escala: flujos de iones y regeneración. Trends Cell Biol. 2007;17(6):261–70.

- Pesce M, Patruno A, Speranza L, Reale M. Campo electromagnético de frecuencia extremadamente baja y cicatrización de heridas: implicación de las citocinas como mediadores biológicos. Eur Cytokine Netw. 2013;24(1):1–10.
- Kang KS, Hong JM, Kang JA, Rhie JW, Jeong YH, Cho DW. Regulación de la diferenciación osteogénica de células madre derivadas de tejido adiposo humano mediante el control de las condiciones del campo electromagnético. Exp Mol Med. 2013;45:e6.
- Martiny K, Lunde M, Bech P. Campos electromagnéticos pulsados de bajo voltaje transcraneales en pacientes con depresión resistente al tratamiento. Biol Psychiatry. 2010;68(2):163–9.
- 21. Rohan ML, Yamamoto RT, Ravichandran CT, Cayetano KR, Morales OG, Olson DP, Vitaliano G, Paul SM, Cohen BM. Efectos rápidos de elevación del estado de ánimo de la estimulación magnética de campo bajo en la depresión. Biol Psychiatry. 2014;76(3):186-22
- Straaso B, Lauritzen L, Lunde M, Vinberg M, Lindberg L, Larsen ER, Dissing S, Bech P. Remisión de dosis de campos electromagnéticos pulsantes como aumento en la depresión resistente al tratamiento: un estudio aleatorizado, doble ciego y controlado. Acta Neuropsychiatr. 2014;26(5):272–9.
- 23. Volkow ND, Tomasi D, Wang GJ, Fowler JS, Telang F, Wang R, Alexoff D, Logan J, Wong C, Pradhan K, et al. Efectos de la estimulación magnética de campo bajo en el metabolismo de la glucosa cerebral. Neuroimage. 2010;51(2):623–8.
- Bassett CA. Aspectos fundamentales y prácticos de los usos terapéuticos de los campos electromagnéticos pulsados (PEMF). Crit Rev Biomed Eng. 1989-17/51-451-579
- 25. Luben RA. Efectos de los campos electromagnéticos de baja energía (pulsados y de corriente continua) en los procesos de transducción de señales de membrana en sistemas biológicos. Health Phys. 1991;61(1):15–28.
- Patino O, Grana D, Bolgiani A, Prezzavento G, Mino J, Merlo A, Benaim F. Campos electromagnéticos pulsados en la cicatrización experimental de heridas cutáneas en ratas. I Burn Care Rehabil. 1996:17/6 Pt 1):528–31.
- 27. Benussi A, Cotelli MS, Cosseddu M, Bertasi V, Turla M, Salsano E, Dardis A, Padovani A, Borroni B. Resultados preliminares sobre la plasticidad cortical similar a la potenciación a largo plazo y la disfunción colinérgica después del tratamiento con miglustat en la enfermedad de Niemann-Pick tipo C. En: Informe JIMD 2017.
- Fiorio M, Emadi Andani M, Marotta A, Classen J, Tinazzi M. Cambios inducidos por placebo en los circuitos corticoespinales excitatorios e inhibidores durante el rendimiento motor. J Neurosci. 2014;34(11):3993–4005.
- Rivadulla C, Foffani G, Oliviero A. Intensidad del campo magnético y reproducibilidad de los imanes de neodimio útiles para la estimulación transcraneal del campo magnético estático de la corteza humana. Neuromodulación. 2014;17(5):438–41 (Discusión 441–432).
- Lu XW, Du L, Kou L, Song N, Zhang YJ, Wu MK, Shen JF. Efectos de campos magnéticos
 estáticos moderados sobre las corrientes de los canales de sodio y calcio dependientes del
 voltaje en las neuronas ganglionares del trigémino. Electromagn Biol Med. 2015;34(4):285-
- 31. Ye SR, Yang JW, Chen CM. Efecto de los campos magnéticos estáticos sobre la amplitud del potencial de acción en la neurona gigante lateral del cangrejo de río. Int J Radiat Biol. 2004;80(10):699–708.
- Rohan M, Parow A, Stoll AL, Demopulos C, Friedman S, Dager S, Hennen J, Cohen BM, Renshaw PF. Estimulación magnética de campo bajo en la depresión bipolar utilizando un estimulador basado en resonancia magnética. Am J Psychiatry. 2004;161(1):93–8.
- 33. Capone F, Dileone M, Profice P, Pilato F, Musumeci G, Minicuci G, Ranieri F, Cadossi R, Setti S, Tonali PA, et al. ¿La exposición a campos magnéticos de frecuencia extremadamente baja produce cambios funcionales en el cerebro humano? J Neural Transm (Viena). 2009;116(3):257-65.